<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
<ArticleSet>
  <Article>
    <Journal>
      <PublisherName>jmedicalcasereports</PublisherName>
      <JournalTitle>Frontiers in Medical Case Reports</JournalTitle>
      <PISSN>I</PISSN>
      <EISSN>S</EISSN>
      <Volume-Issue>Volume 4; Issue 5</Volume-Issue>
      <PartNumber/>
      <IssueTopic>Multidisciplinary</IssueTopic>
      <IssueLanguage>English</IssueLanguage>
      <Season>(Sep-Oct, 2023)</Season>
      <SpecialIssue>N</SpecialIssue>
      <SupplementaryIssue>N</SupplementaryIssue>
      <IssueOA>Y</IssueOA>
      <PubDate>
        <Year>-0001</Year>
        <Month>11</Month>
        <Day>30</Day>
      </PubDate>
      <ArticleType>Medical Case Reports</ArticleType>
      <ArticleTitle>Accuracy and Repeatability of CT-Scan Evaluating the Polyethylene Wear in Hip Arthroplasty</ArticleTitle>
      <SubTitle/>
      <ArticleLanguage>English</ArticleLanguage>
      <ArticleOA>Y</ArticleOA>
      <FirstPage>1</FirstPage>
      <LastPage>10</LastPage>
      <AuthorList>
        <Author>
          <FirstName>DUTREY</FirstName>
          <LastName>Thomas</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>N</CorrespondingAuthor>
          <ORCID/>
          <FirstName>Eloi</FirstName>
          <LastName>VIGNON</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
          <FirstName>Mickael</FirstName>
          <LastName>ROPARS</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
        </Author>
      </AuthorList>
      <DOI/>
      <Abstract>Background: Polyethylene wear in hip arthroplasty is an early indicator of potential implant failure, with the wear rate directly associated with the probability of requiring a revision surgery highlighting the vital need for precise patient follow-up method. In our study, we assessed the accuracy and repeatability of CT scans in measuring polyethylene wear. Our goal was to validate the effectiveness of a newly developed custom software designed to automate and improve precision.&#13;
&#13;
Materials and Methods: We conducted a comparative analysis between modified implants intentionally subjected to wear by the manufacturer and the estimates generated by the software method. To evaluate repeatability, each implant underwent two CT scans using various combinations of irradiation dose protocols, bone or tissue filter reconstructions, and metallic artifacts correction techniques.&#13;
&#13;
Results: The accuracy and the repeatability coefficient were 0.03 mm and 0.04 mm respectively. All measurement differences for all combinations of protocols, filters and correctors lied within the agreement limit under 0.1 mm set as clinical acceptance threshold. The average time for analysis was 15 seconds per scan. No difference on accuracy was found between routine low dose and high dose protocol according to Kruskal-Wallis test.&#13;
&#13;
Conclusion: This approach is highly clinically applicable in routine use with a single CT method. This tool offers simplicity, inter-rater reliability, high reproducibility, and is aptly useful for monitoring wear rate regardless of acquisition protocol and high accuracy level.</Abstract>
      <AbstractLanguage>English</AbstractLanguage>
      <Keywords>Hip Arthroplasty,CT scan,Femoral Head Penetration,Polyethylene Wear</Keywords>
      <URLs>
        <Abstract>https://www.jmedicalcasereports.org/ubijournal-v1copy/journals/abstract.php?article_id=14832&amp;title=Accuracy and Repeatability of CT-Scan Evaluating the Polyethylene Wear in Hip Arthroplasty</Abstract>
      </URLs>
      <References>
        <ReferencesarticleTitle>References</ReferencesarticleTitle>
        <ReferencesfirstPage>16</ReferencesfirstPage>
        <ReferenceslastPage>19</ReferenceslastPage>
        <References>Boettner F, Sculco P, Lipman J, Renner L, Faschingbauer M. A novel method to measure femoral component migration by computed tomography: a cadaver study. Arch Orthop Trauma Surg 2016; 136: 857-863.&#13;
&#13;
Boettner F, Sculco PK, Lipman J, Saboeiro G, Renner L, Faschingbauer M. The effect of a low radiation CT protocol on accuracy of CT guided implant migration measurement: A cadaver study. J Orthop Res 2016; 34: 725-728.&#13;
&#13;
Brodand;eacute;n C, Sandberg O, Skand;ouml;ldenberg O, Stigbrand H, Hand;auml;nni M, Giles JW, Emery R, Lazarinis S, Nystrand;ouml;m A, Olivecrona H. Low-dose CT-based implant motion analysis is a precise tool for early migration measurements of hip cups: a clinical study of 24 patients. Acta Orthop 2020; 91: 260-265.&#13;
&#13;
Callary SA, Solomon LB, Holubowycz OT, Campbell DG, Howie DW. Accuracy of methods to measure femoral head penetration within metal-backed acetabular components. J Orthop Res 2017; 35: 988-996.&#13;
&#13;
Delaunay C, Hamadouche M. (2012). Epidand;eacute;miologie des rand;eacute;visions des prothand;egrave;ses totales primaires de la hanche en France 2012 (Symposium session at the SOFCOT). SOFCOT.&#13;
&#13;
Devane PA, Bourne RB, Rorabeck CH, MacDonald S, Robinson EJ. Measurement of polyethylene wear in metal-backed acetabular cups. II. Clinical application. Clin Orthop Relat Res 1995; 319: 317-326.&#13;
&#13;
Dumbleton JH, Manley MT, Edidin AA. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplasty 2002; 17: 649-661.&#13;
&#13;
Eriksson T, Maguire GQ Jr, Noz ME, Zeleznik MP, Olivecrona H, Shalabi A, Hand;auml;nni M. Are low-dose CT scans a satisfactory substitute for stereoradiographs for migration studies? A preclinical test of low-dose CT scanning protocols and their application in a pilot patient. Acta Radiol 2019; 60: 1643-1652.&#13;
&#13;
Erivan R, Villatte G, Dartus J, Reina N, Descamps S, Boisgard S. Progression and projection for hip surgery in France, 2008-2070: Epidemiologic study with trend and projection analysis. Orthop Traumatol Surg Res 2019; 105: 1227-1235.&#13;
&#13;
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012; 30: 1323-1341.&#13;
&#13;
Goldvasser D, Hansen VJ, Noz ME, Maguire GQ Jr, Zeleznik MP, Olivecrona H, Bragdon CR, Weidenhielm L, Malchau H. In vivo and ex vivo measurement of polyethylene wear in total hip arthroplasty: comparison of measurements using a CT algorithm, a coordinate-measuring machine, and a micrometer. Acta Orthop 2014; 85: 271-275.&#13;
&#13;
Grillini L, Affatato S. How to measure wear following total hip arthroplasty. Hip Int 2013; 23: 233-242.&#13;
&#13;
Hardinge K, Porter ML, Jones PR, Hukins DW, Taylor CJ. Measurement of hip prostheses using image analysis. The maxima hip technique. J Bone Joint Surg Br 1991; 73: 724-728.&#13;
&#13;
Ilchmann T, Mjand;ouml;berg B, Wingstrand H. Measurement accuracy in acetabular cup wear. Three retrospective methods compared with Roentgen stereophotogrammetry. J Arthroplasty 1995; 10: 636-642.&#13;
&#13;
Jedenmalm A, Nilsson F, Noz ME, Green DD, Gedde UW, Clarke IC, Stark A, Maguire GQ Jr, Zeleznik MP, Olivecrona H. Validation of a 3D CT method for measurement of linear wear of acetabular cups. Acta Orthop 2011; 82: 35-41.&#13;
&#13;
Jedenmalm A, Noz ME, Olivecrona H, Olivecrona L, Stark A. A new approach for assessment of wear in metal-backed acetabular cups using computed tomography: a phantom study with retrievals. Acta Orthop 2008; 79: 218-224.&#13;
&#13;
Kitamura N, Leung SB, Engh CA Sr. Characteristics of pelvic osteolysis on computed tomography after total hip arthroplasty. Clin Orthop Relat Res 2005; 441: 291-297.&#13;
&#13;
Martell JM, Berkson E, Berger R, Jacobs J. Comparison of two and three-dimensional computerized polyethylene wear analysis after total hip arthroplasty. J Bone Joint Surg Am 2003; 85: 1111-1117.&#13;
&#13;
McCalden RW, Naudie DD, Yuan X, Bourne RB. Radiographic methods for the assessment of polyethylene wear after total hip arthroplasty. J Bone Joint Surg Am 2005; 87: 2323-2334.&#13;
&#13;
Olivecrona H, Weidenhielm L, Olivecrona L, Beckman MO, Stark A, Noz ME, Maguire GQ Jr, Zeleznik MP, Svensson L, Jonson T. A new CT method for measuring cup orientation after total hip arthroplasty: a study of 10 patients. Acta Orthop Scand 2004; 75: 252-260.&#13;
&#13;
Ranstam J, Ryd L, Onsten I. Accurate accuracy assessment: review of basic principles. Acta Orthop Scand 2000; 71: 106-108.&#13;
&#13;
Roth TD, Maertz NA, Parr JA, Buckwalter KA, Choplin RH. CT of the hip prosthesis: appearance of components, fixation, and complications. Radiographics 2012; 32: 1089-1107.&#13;
&#13;
Sochart DH. Relationship of acetabular wear to osteolysis and loosening in total hip arthroplasty. Clin Orthop Relat Res 1999; 363: 135-150.&#13;
&#13;
The B, Mol L, Diercks RL, van Ooijen PM, Verdonschot N. Correction of error in two-dimensional wear measurements of cemented hip arthroplasties. Clin Orthop Relat Res 2006; 442: 180-186.&#13;
&#13;
Valstar ER, de Jong FW, Vrooman HA, Rozing PM, Reiber JH. Model-based Roentgen stereophotogrammetry of orthopaedic implants. J Biomech 2001; 34: 715-722.</References>
      </References>
    </Journal>
  </Article>
</ArticleSet>