<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd"> <ArticleSet> <Article> <Journal> <PublisherName>jmedicalcasereports</PublisherName> <JournalTitle>Frontiers in Medical Case Reports</JournalTitle> <PISSN>I</PISSN> <EISSN>S</EISSN> <Volume-Issue>Volume 2; Issue 4</Volume-Issue> <PartNumber/> <IssueTopic>Multidisciplinary</IssueTopic> <IssueLanguage>English</IssueLanguage> <Season>(Jul-Aug, 2021)</Season> <SpecialIssue>N</SpecialIssue> <SupplementaryIssue>N</SupplementaryIssue> <IssueOA>Y</IssueOA> <PubDate> <Year>-0001</Year> <Month>11</Month> <Day>30</Day> </PubDate> <ArticleType>Medical Case Reports</ArticleType> <ArticleTitle>Focus on Diabetic Retinopathy (DR) and MicroRNA “What Association”</ArticleTitle> <SubTitle/> <ArticleLanguage>English</ArticleLanguage> <ArticleOA>Y</ArticleOA> <FirstPage>1</FirstPage> <LastPage>13</LastPage> <AuthorList> <Author> <FirstName>L.</FirstName> <LastName>Puccio</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>N</CorrespondingAuthor> <ORCID/> <FirstName>P.</FirstName> <LastName>Caroleo</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> <FirstName>V.</FirstName> <LastName>Giampà</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> <FirstName>P.</FirstName> <LastName>Sarnelli</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> <FirstName>A.</FirstName> <LastName>Antonini</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> <FirstName>O.</FirstName> <LastName>Lodari</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> <FirstName>F.</FirstName> <LastName>Iannelli</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> <FirstName>A.</FirstName> <LastName>Cerchiaro</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> <FirstName>R.</FirstName> <LastName>Paone</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> <FirstName>C.</FirstName> <LastName>Paone</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> </Author> </AuthorList> <DOI/> <Abstract>Diabetes Mellitus (DM) is one of the most common chronic diseases in the world. According to the latest data from the International Diabetes Federation, it is estimated that around 700 million will develop DM by 2045! Glycemic control is crucial in the management of DM and for the prevention of microvascular “nephropathy, retinopathy, neuropathy” and macrovascular complications. Of all the microvascular complications, the one that aroused most interest in our descriptive study was Diabetic Retinopathy (DR), since, if left untreated, it leads to irreversible anatomical and functional damage. DR is the leading cause of blindness in working-age adults across the world. The pathogenesis of DR is multifactorial and the molecular mechanisms are still not fully understood. The treatment of DR essentially involves laser therapy, which is not always decisive due to absence and/or limited availability of successful drug therapies for these blinding disorders. The clinical diagnosis of DM often occurs late and this delay means that the chronic vascular complications associated with the disease are already present at the time of diagnosis. Therefore, this risk can be reduced if an early diagnosis is made. Hence the need to identify new specific biomarkers that can act as diagnostic and prognostic indicators of the disease. According to some studies, putative roles of small endogenous molecules of microRNAs as indicators of DR and associated complications are being considered. They carry out their silencing activity on a wide range of transcripts deriving from the expression of thousands of genes. There is evidence for the aberrant expression of microRNAs implicated in the onset of numerous pathologies. Since most of the genetic variations associated with diabetes are found in regions of the human genome that are not coding for proteins, it is worth studying those microRNAs involved in DR, both as possible therapeutic targets and as specific predictive diagnostic biomarkers. The present study aims to highlight the importance of some microRNAs and indicate those most implicated in the onset of DR, according to the literature, for the purpose of making a previous diagnosis of diabetes, in particular of DR.</Abstract> <AbstractLanguage>English</AbstractLanguage> <Keywords>Diabetic Retinopathy,MicroRNA, Diabetes,Retinopathies</Keywords> <URLs> <Abstract>https://www.jmedicalcasereports.org/ubijournal-v1copy/journals/abstract.php?article_id=13090&title=Focus on Diabetic Retinopathy (DR) and MicroRNA “What Association”</Abstract> </URLs> <References> <ReferencesarticleTitle>References</ReferencesarticleTitle> <ReferencesfirstPage>16</ReferencesfirstPage> <ReferenceslastPage>19</ReferenceslastPage> <References>Abramsson A, Lindblom P, Betsholtz C. Endothelial and non endothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 2003; 112: 1142. America Diabetes Association. Microvascular Complications and Food Care: Standards of Medical Care in Diabetes – 2019. Diabetes Care 2013; 42: S124-S138. Anna Votano, Alessia Bonofiglio, Federica Catalano, Claudia Paone. Importance of Alpha Lipoic Acid (ALA): Antidiabetic and Antioxidant Effects. Front Med Case Rep 2021; 2: 1-09. Bai Y, Bai X, Wang Z, Zhang X, Ruan C, Miao J. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol 2011; 91: 471–477. Bharadwaj AS, Appukuttan B, Wilmarth PA, Pan Y, Stempel AJ, Chipps TJ, Benedetti EE, Zamora DO, Choi D, David LL, Smith JR. Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 2013; 32: 102–180. Ceriello A, Novials A, Ortega E, Pujadas G, La Sala L, Testa R, Bonfigli AR, Genovese S. Hyperglycemia following recovery from hypoglycemia worsens endothelial damage and thrombosis activation in type 1 diabetes and in healthy controls. Nutr Metab Cardiovasc Dis 2014; 24: 116–123. Cheloni R, Gandolfi SA, Signorelli C, Odone A. Global prevalence of diabetic retinophaty: protocol for a systematic review and meta-analysis. BMJ Open 2019; 9: e022188. Chen C, Zhao C, Gu C, Cui X, Wu J. MiRNA-144-3p inhibits high glucose induced cell proliferation through suppressing FGF16. Biosci Rep 2019; 39: BSR20181788. Cheung N, Mitchell P. Wong TY. Diabetic retinophaty. Lancet 2010; 376: 124-136. Chung SH, Gillies M, Sugiyama Y, Zhu L, Lee SR, Shen W. Profiling of microRNAs involved in retinal degeneration caused by selective Mand;uuml;ller cell ablation. PLoS One 2015; 10: e0118949. Cohen SR and Gardner TW. Diabetic Retinopathy and Diabetic Macular Edema. Dev Ophthalmol 2016; 55: 137-146. Costantino S, Paneni F, Land;uuml;scher TF, Cosentino F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J 2016; 37: 572–576. Das A and McGuire PG. Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res 2003; 22: 721-748. Feng B, Cao Y, Chen S, Chu X, Chu Y, Chakrabarti S. MirR-200b mediates endothelial to mesenchymal transition in diabetic cardiomyopathy. Diabetes 2016; 65: 768-779. Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, Federici M. Regulation of TIMP3 in diabetic nephropathy: A role for microRNAs. Acta Diabetol 2013; 50: 965–969. Frank RN. Growth factors in age-related macular degeneration: pathogenic and therapeutic implications. Ophthalmic Res 1997; 29: 341. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105. Giovanni Faglia, Paolo Beck-Peccoz, Anna Spada. Diseases of the endocrine system and metabolism. McGraw-Hill, 2013. Goyal D, Limesand S, Goyal R. Epigenetic responses and the developmental origins of health and disease. J Endocrinol 2019; 242: T105-119 Incalza MA, Dand;#39;Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascular Pharmacology 2018; 100: 1-19. Italian standards for the treatment of diabetes mellitus 2018. Jack Kanski and Brad Bowling. Clinical Ophthalmology. A Systematic Approach Kanski’s 8th Edition. 22 May 2015;520-529. Karali M, Peluso I, Gennarino VA, Bilio M, Verde R, Lago G, Dolland;eacute; P, Banfi S. miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics 2010; 11: 1-4. Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schand;uuml;beler D, Oertner TG. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 2010; 141: 618–631. Kruger Falk M, Kemp H, Sorensen TL. Four-year treatment results of neovascular age-related macular degeneration with ranibizumab and causes for discontinuation of treatment. Am J Ophthalmol 2013; 155: 89–95. Lee R, Wong TY, Sabanayagam C. Epidemiology of Diabetic Retinopathy, Diabetic Macular Edema and Related Vision Loss. Eye Vis (Lond) 2015; 2:17. Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep 2017; 37: BSR20160572 Li P, Guo W, Du L, Zhao J, Wang Y, Liu L, Hu Y, Hou Y. microRNA-29b contributes to pre-eclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells. Clin Sci (Lond) 2013; 124: 27–40. Li X and e Shao Y. MiRNA-451 / ATF-2 regola la proliferazione e la migrazione delle cellule epiteliali pigmentate della retina nella retinopatia diabetica proliferativa. Oftalmolo investigativo. Visual Sci 2015; 56: 44. Lightell Jr DJ, Moss SC, Woods TC. Upregulation of miR-221 and -222 in response to increased extracellular signal-regulated kinases 1/2 activity exacerbates neointimal hyperplasia in diabetes mellitus. Atherosclerosis 2018; 269: 71–78. Linsenmeier RA and Zhang HF. Zhang. Retinal Oxygen: from animals to humans. Prog Retin Eye Res 2017; 58: 115-151. Liu CH, Huang S, Britton WR, Chen J. MicroRNAs in vascular eye diseases. Int J Mol Sci 2020; 21: 649. Liu HN, Li X, Wu N, Tong MM, Chen S, Zhu SS, Qian W, Chen XL. Serum microRNA-221 as a biomarker for diabetic retinopathy in patients associated with type 2 diabetes. Int J Ophthalmol 2018; 11: 1889–1894. Liu TT, Hao Q, Zhang Y, Li ZH, Cui ZH, e Yang W. Effetti del microRNA-133b sulla proliferazione e sulland;#39;apoptosi delle cellule endoteliali vascolari retiniche attraverso land;#39;angiotensina II mediata da angiotensinogeno - chinasi extracellulare-regolata dal segnale 1/2 via di segnalazione nei ratti con retinopatia diabetica. Acta Ophthalmol 2018; 10.1111 / aos.13715. Masuda T, Shimazawa M, Hara H. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger. Oxid Med Cell Longev 2017; 2017: 9208489. Mayur Choudhary and Goldis Malek. Rethinking nuclear receptors as potential therapeutic targets for retinal disease. J Biomol Screen 2016; 21: 1007-1018. Mazzeo A, Beltramo E, Lopatina T, Gai C, Trento M, Porta M. Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects. Exp Eye Res 2018; 176: 69–77. McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S. MicroRNA-200b regola le alterazioni mediate dal fattore di crescita endoteliale vascolare nella retinopatia diabetica. Diabetes 2011; 60: 1314-1323. McAuley AK, Dirani M, Wang JJ, Connell PP, Lamoureux EL, Hewitt AW. A genetic variant regulating miR-126 is associated with sight threatening diabetic retinopathy. Diab Vasc Dis Res 2015; 12: 133–138. Muka T, Koromani F, Portilla E, Oand;#39;Connor A, Bramer WM, Troup J, Chowdhury R, Dehghan A, Franco OH. The role of epigenetic modifications in cardiovascular disease: A systematic review. Int J Cardiol 2016; 212: 174–183. Qiaoyun Gong and Guanfang Su. Roles of miRNAs and long non coding RNAs in the progression of diabetic retinopathy. Bioscience Reports 2017; 37: BSR201711157. Qin LL, An MX, Liu YL, Xu HC, Lu ZQ. MicroRNA-126: un promettente nuovo biomarcatore nel sangue periferico per la retinopatia diabetica. Int J Ophthalmol 2017; 10: 530–534. Qing S, Yuan S, Yun C, Hui H, Mao P, Wen F, Ding Y, Liu Q. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem 2014; 34: 1733–1740. Qing S, Yuan S, Yun C, Hui H, Mao P, Wen F, Ding Y, Liu Q. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol. Biochem 2014; 34: 1733–1740. Rodriguez H and El-Osta A. Epigenetic contribution to the development and progression of vascular diabetic complications. Antioxid Redox Signal 2018; 29: 1074-1091. Ruta LM, Magliano DJ, Lemesurier R, Taylor HR, Zimmet PZ, Shaw JE. Prevalence of Diabetic Retinopathy in Type 2 Diabetes in Developing and Developed Countries. Diabet Med 2013; 30: 387–398. Sinclair SH and Schwartz SS. Diabetic Retinopathy-An underdiagnosed and undertreated inflammatory, neuro-vascular complication of diabetes. Front Endocrinol (Lausanne) 2019; 10: 843. Sorrentino FS, Matteini S, Bonifazzi C, Sebastiani A, Parmeggiani F. Diabetic retinopathy and endothelin system: microangiopathy versus endothelial dysfunction. Eye (Lond) 2018; 32: 1157-1163. Sundermeier TR and Palczewski K. The physiological impact of microRNA gene regulation in the retina. Cell Mol Life Sci 2012; 69: 2739–2750. Tang W, Guo J, Gu R, Lei B, Ding X, Ma J, Xu G. MicroRNA-29-3p inhibits cell proliferation and angiogenesis by targeting VEGF-A and PDGFB in retinal microvascular endothelial cells. Mol Vis 2020; 26: 64-75. Tang W, Guo J, Gu R, Lei B, Ding X, Ma J, Xu G. MicroRNS-29b-3p inhibits cell proliferation and angiogenesis by targeting VEGF and PDGFB in retinal microvascular endothelial cells. Mol Vis 2020; 26: 64-75. Wang Y and Yan H. MicroRNA-126 contributes to Niaspan treatment induced vascular restoration after diabetic retinopathy. Sci Rep 2016; 6: 26909. Wu JH, Gao Y, Ren AJ, Zhao SH, Zhong M, Peng YJ, Shen W, Jing M, Liu L. Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res 2012; 47: 195-201. Yang S, Zhao J, Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther 2016; 10: 1857-1867. Yang TT, Song SJ, Xue HB, Shi DF, Liu CM, Liu H. Regulatory T cells in the pathogenesis of type 2 diabetes mellitus retinopathy by miR-155. Eur Rev Med Pharmacol Sci 2015; 19: 2010–2015. Yang Y, Liu Y, Li Y, Chen Z, Xiong Y, Zhou T, Tao W, Xu F, Yang H, Yland;auml;-Herttuala S, Chaurasia SS. MicroRNA-15b Targets VEGF and Inhibits Angiogenesis in Proliferative Diabetic Retinopathy. The Journal of Clinical Endocrinology and; Metabolism 2020; 105: 3404-3415. Yao Y, Du J, Li R, Zhao L, Luo N, Zhai JY, Long L. Association between ICAM-1 level and diabetic retinopathy: a review and meta-analysis. Postgrad Med J 2019; 95: 162-168. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, Haffner S. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012; 35: 556–564. Ye P, Liu J, He F, Xu W, Yao K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci 2014; 11: 17–23. Yi Shi and Paul M. Vanhoutte. Macro and microvascular endothelial dysfunction in diabetes. Journal of Diabetes 2017; 9: 434-449. Yun-Zheng Le. VEGF production and signalling in Mand;uuml;ller glial are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic renal vascular diseases. Vision Res 2017; 139: 108-114. Zampetaki A, Willeit P, Burr S, Yin X, Langley SR, Kiechl S, Klein R, Rossing P, Chaturvedi N, Mayr M. Angiogenic microRNAs Linked to Incidence and Progression of Diabetic Retinopathy in Type 1 Diabetes. Diabetes 2016; 65: 216–227. Zhang LQ, Cui H, Wang L, Fang X, Su S (2017) Role of microRNA-29° in the development of diabetic retinopathy by targeting the AGT gene in a rat model. Exp Mol Pathol 2017; 102: 296–302. Zuzic M, Rojo Arias JE, Wohl SG, Busskamp V. Retinal miRNA functions in health and disease. Genes /Basel 2019; 10: 377.</References> </References> </Journal> </Article> </ArticleSet>