<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
<ArticleSet>
  <Article>
    <Journal>
      <PublisherName>jmedicalcasereports</PublisherName>
      <JournalTitle>Frontiers in Medical Case Reports</JournalTitle>
      <PISSN>I</PISSN>
      <EISSN>S</EISSN>
      <Volume-Issue>Volume 2; Issue 3</Volume-Issue>
      <PartNumber/>
      <IssueTopic>Multidisciplinary</IssueTopic>
      <IssueLanguage>English</IssueLanguage>
      <Season>(May-Jun, 2021)</Season>
      <SpecialIssue>N</SpecialIssue>
      <SupplementaryIssue>N</SupplementaryIssue>
      <IssueOA>Y</IssueOA>
      <PubDate>
        <Year>-0001</Year>
        <Month>11</Month>
        <Day>30</Day>
      </PubDate>
      <ArticleType>Medical Case Reports</ArticleType>
      <ArticleTitle>NLRP3 Inflammasome Activation in Renal Injury: Long-Term Effectiveness and Safety of Blocking the IL-1 System in a Kidney Transplanted Patient Affected by AA Amyloidosis Secondary to Cryopyrin-Associated Periodic Syndromes (CAPS)</ArticleTitle>
      <SubTitle/>
      <ArticleLanguage>English</ArticleLanguage>
      <ArticleOA>Y</ArticleOA>
      <FirstPage>1</FirstPage>
      <LastPage>11</LastPage>
      <AuthorList>
        <Author>
          <FirstName>Luigi</FirstName>
          <LastName>Melfa</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>N</CorrespondingAuthor>
          <ORCID/>
          <FirstName>Chiara</FirstName>
          <LastName>Rocca</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
          <FirstName>Giorgia</FirstName>
          <LastName>Comai</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
          <FirstName>Gaetano</FirstName>
          <LastName>LaManna</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
          <FirstName>Roberto</FirstName>
          <LastName>Scarpioni</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
        </Author>
      </AuthorList>
      <DOI/>
      <Abstract>NLRP3 inflammasome activation is recognized to play a key role in the pathogenesis of several chronic diseases such as chronic tubulointerstitial diseases, glomerulonephritis and calcium oxalate crystal nephropathy. Genetic variants of NLPR3 are likely associated to pro-inflammatory/autoimmune disorders, by the altered self-regulation of inflammasome with overproduction of inflammatory cytokines. Recently experimental and human studies have focused on the interest in both acute and chronic renal diseases. Inhibition of the Interleukin-1 (IL-1) system has become an attractive potential therapeutic target in a variety of renal disorders, including IgA nephropathy, ischemic reperfusion injury, after unilateral ureteral obstruction, rhabdomyolisys-induced Acute Kidney Injury (AKI), contrast-induced AKI, crystalline nephropathy, and recently also in diabetic nephropathy.NLRP3 activation in kidney diseases magnify inflammation and subsequent fibrosis, and this effect is abrogated by genetic or pharmacologic deletion of NLRP3. Inflammasome-dependent NLRP3 mediates the progression of kidney diseases by rapidly increasing the inflammatory response in immune cells as demonstrated also in hereditary autoimmune syndromes, like CAPS.&#13;
&#13;
We describe the renal involvement in one patient affected by Muckle-Wells syndrome (MWS), biopsy-proven reactive AA amyloidosis and proteinuric renal failure, by focusing the interest above all on the efficacy and safety profile of therapy with anti-IL1 antibody on a clinical continuum from the reduced renal function to the kidney transplant.</Abstract>
      <AbstractLanguage>English</AbstractLanguage>
      <Keywords>NLR3 Inflammasome,Renal AA Amyloidosis,Kidney Transplant,Muckle-Wells Syndrome,Interleukin-1,Autoinflammatory Syndrome,Immunosuppressive Therapy</Keywords>
      <URLs>
        <Abstract>https://www.jmedicalcasereports.org/ubijournal-v1copy/journals/abstract.php?article_id=9701&amp;title=NLRP3 Inflammasome Activation in Renal Injury: Long-Term Effectiveness and Safety of Blocking the IL-1 System in a Kidney Transplanted Patient Affected by AA Amyloidosis Secondary to Cryopyrin-Associated Periodic Syndromes (CAPS)</Abstract>
      </URLs>
      <References>
        <ReferencesarticleTitle>References</ReferencesarticleTitle>
        <ReferencesfirstPage>16</ReferencesfirstPage>
        <ReferenceslastPage>19</ReferenceslastPage>
        <References>Becker GJ and Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Hypertens 2000; 9: 133-138.&#13;
&#13;
Dayer JM, Oliviero F, Punzi L. A brief history of IL-1 and IL-1 Ra in rheumatology. Front Pharmacol 2017; 8: 293.&#13;
&#13;
De Torre-Minguela C, Mesa del Castillo P, Pelegrin P. The NLRP3 and pyrin inflammasomes: implications in the pathophysiology of autoinflammatory diseases. Front Immunol 2017; 8: 43.&#13;
&#13;
Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464: 1357–1361.&#13;
&#13;
Faust J, Menke J, Kriegsmann J, Kelley VR, Mayet WJ, Galle PR, Schwarting A. Correlation of renal tubular epithelial cell-derived interleukin-18 up-regulation with disease activity in MRL-Faslpr mice with autoimmune lupus nephritis. Arthritis Rheum. 2002; 46: 3083–3095.&#13;
&#13;
Franke EI, Vanderbrink BA, Hile KL, Zhang H, Cain A, Matsui F, Meldrum KK. Renal IL-18 production is macrophage independent during obstructive injury. PLoS One 2012; 7: e47417.&#13;
&#13;
Fu R, Guo C, Wang S, Huang Y, Jin O, Hu H, Chen J, Xu B, Zhou M, Zhao J, Sung SS. Podocyte Activation of NLPR3 inflammasome Contributes to the Development of Proteinuria in Lupus Nephritis. Arthritis Rheumatol 2017; 69:1636-1646.&#13;
&#13;
Grandaliano G, Gesualdo L, Bartoli F, Ranieri E, Monno R, Leggio A, Paradies G, Caldarulo E, Infante B, Schena FP. MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy. Kidney Int 2000; 58: 182-192.&#13;
&#13;
Gul A. Approach to the patients with inadequate response to colchicine in Familial Mediterranean Fever. Best Pract Res Clin Rheumatol 2016; 30: 296-303.&#13;
&#13;
Guo H, Bi X, Zhou P, Zhu S, Ding W. NLPR3 Deficiency Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in a Mouse Unilateral Ureteral Obstruction Model Of Chronic Kidney disease. Mediators Infalmm 2017; 2017: 8316560.&#13;
&#13;
Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 2001; 29: 301-305.&#13;
&#13;
KDIGO clinical practice guideline for the care of kidney transplant recipients. Kidney Disease. Improving Global Outcomes (KDIGO) Transplant Work Group. Am J Transplant 2009; 9: S1-S55.&#13;
&#13;
Komada T, Usui F, Kawashima A, Kimura H, Karasawa T, Inoue Y, Kobayashi M, Mizushina Y, Kasahara T, Taniguchi SI, Muto S. Role of NLPR3 Inflammasome for Rhabdomyolysis-induced Acute Kidney Injury. Sci Rep 2015; 5: 10901.&#13;
&#13;
Kortus-Gotze B and Hoyer J. Successful renal transplantation in Muckle-Wells syndrome treated with anti-IL-1beta-monoclonal antibody. NDT Plus 2011; 4: 404-405.&#13;
&#13;
Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, Diep H, Kett MM, Samuel CS, Kemp-Harper BK, Robertson AA. Pharmacological inhibition of the NLPR3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res 2019; 115: 776-787.&#13;
&#13;
Lachmann HJ, Goodman HJ, Gilbertson JA, Gallimore JR, Sabin CA, Gillmore JD, Hawkins PN. Natural history and outcome in systemic AA amyloidosis. NEJM 2007; 356: 2361-2371.&#13;
&#13;
Lau A, Chung H, Komada T, Platnich JM, Sandall CF, Choudhury SR, Chun J, Naumenko V, Surewaard BG, Nelson MC, Ulke-Lemand;eacute;e A. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest 2018; 128: 2894-2913.&#13;
&#13;
Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013; 62: 194-204.&#13;
&#13;
Liu Y, Berthier-Schaad Y, Fallin MD, Fink NE, Tracy RP, Klag MJ, Smith MW, Coresh J. IL-6 haplotypes, inflammation, and risk for cardiovascular disease in a multiethnic dialysis cohort. J Am Soc Nephrol 2006; 17: 863-870.&#13;
&#13;
Lorenz G, Darisipudi MN, Anders HJ. Canonical and non-canonical effectsof the NLRP3 inflammasome in kidney inflammation and fibrosis. Nephrol Dial Transplant 2014; 29: 41-48.&#13;
&#13;
Lucherini OM, Rigante D, Sota J, Fabiani C, Obici L, Cattalini M, Gattorno M, Cantarini L. Updated overview of molecular pathways involved in the most common monogenic autoinflammatory diseases. Clin Exp Rheumatol 2018; 36: S3-S9&#13;
&#13;
Masters SL, Simon A, Aksentijevich I. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu rev Immunol 2009; 27: 621-668.&#13;
&#13;
Mezzano SA, Droguett MA, Burgos ME, Ardiles LG, Aros CA, Caorsi I, Egido J. Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int 2000; 57: 147-158.&#13;
&#13;
Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, Muruve D, Shi Y, Munro F, Liapis H, Anders HJ. Calcium oxalate crystals induce renal inflammation by NLPR3-mediated IL-1 beta secretion. J Clin Invest 2013; 123: 236-246.&#13;
&#13;
Ozcakar ZB, Keven K, Cakar N, Yalcinkaya F. Transplantation within the era of anti-IL-1 therapy: case series of five patients with familial Mediterranean fever-related amyloidosis. Transplant International 2018; 31: 1181-1184.&#13;
&#13;
Quartier P. Interleukin-1 antagonists in the treatment of autoinflammatory syndromes, including cryopyrin-associated periodic syndrome. Open Access Rheumatology: Research and Reviews 2011; 3: 9.&#13;
&#13;
Scarpioni R and Obici L. Renal involvement in autoinflammatory diseases and inflammasome-mediated chronic kidney damage. Clin Exp Rheumatol 2018; 36: 54-60.&#13;
&#13;
Scarpioni R, Ricardi M, Albertazzi V. Secondary amyloidosis in autoinflammatory diseases and the role of inflammation in renal damage. World J Nephrol 2016; 5: 66-75.&#13;
&#13;
Scarpioni R, Rigante D, Cantarini L, Ricardi M, Albertazzi V, Melfa L, Lazzaro A. Renal involvement in secondary amyloidosis of Muckle-Wells syndrome: marked improvement of renal function and reduction of proteinuria after therapy with human anti-interleukin-1and;beta; monoclonal antibody canakinumab. Clin Rheumatol 2015; 34: 1311-1316.&#13;
&#13;
Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Ranjan S, Wolter J, Wacker C, Biemann R, Stoyanov S. NLRP3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 2015; 87: 74-84.&#13;
&#13;
Sozeri B, Gulez N, Ergin M, Serdaroglu E. The experience of canakinumab in renal amyloidosis secondary to Familial Mediterranean Fever. Mol Cell Pediatr 2016; 3: 33&#13;
&#13;
Tsai YL, Hua KF, Chen A, Wei CW, Chen WS, Wu CY, Chu CL, Yu YL, Lo CW, Ka SM. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Sci Rep 2017; 7: 1-5.&#13;
&#13;
Turner CM, Arulkumaran N, Singer M, Unwin RJ, Tam FW. Is the inflammasome a potential therapeutic target in renal disease? BMC Nephrol 2014; 15: 21.&#13;
&#13;
Van der Hilst JC, Drenth JPH, Simon A. Hereditary periodic fever and reactive amyloidosis. Clin Exp Med 2005; 5: 87-98.&#13;
&#13;
van der Hilst JC, Moutschen M, Messiaen PE, Lauwerys BR, Vanderschueren S. Efficacy of anti IL-1 treatment in familial Mediterranean fever: a systematic review of the literature. Biologics 2016; 10: 75-80.&#13;
&#13;
VanderBrink BA, Asanuma H, Hile K, Zhang H, Rink RC, Meldrum KK. Interleukin-18 stimulates a positive feedback loop during renal obstruction via interleukin-18 receptor. J Urol 2011; 186: 1502–1508.&#13;
&#13;
Yang Gyun Kim, Su-Mi Kim, Ki-Pyo Kim, Sang-Ho Lee, Ju-Young Moon. The Role of Inflammasome-Dependent and Inflammasome-Independent NLRP3 in the Kidney. Cells 2019; 8: 1389.&#13;
&#13;
Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N Eng J Med 2008; 359: 1897-1908.&#13;
&#13;
Zhang C, Boini KM, Xia M, Abais JM, Li X, Liu Q, Li PL. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia. Hypertension 2012; 60: 154–162.&#13;
&#13;
Zhong Y, Kinio A, Saleh M. Functions of NOD-like receptors in human diseases. Front Immunol 2013; 4: 333.</References>
      </References>
    </Journal>
  </Article>
</ArticleSet>